{меню магазина:3}
{вход}
animateMainmenucolor

Скважинный струйный насос

Схема работы и принцип действия струйного насоса

В последние десятилетия ведутся активные поиски новых способов добычи нефти, особенно в области эксплуатации наклонных скважин. При использовании бесштанговых гидроприводных струйных насосных установок вместо УСШН в скважинах со значительной кривизной ствола энергетические затраты существенно снижаются, а межремонтный период (МРП) скважинного оборудования увеличивается. Компактность, высокие монтажеспособность, эффективность и степень унификации узлов позволяют применять гидроприводные насосные установки при эксплуатации кустовых скважин в труднодоступных районах Сибири и на морских месторождениях.

Изменение условий эксплуатации многих нефтяных месторождений, связанное с увеличением числа объектов разработки в труднодоступных северных районах и на континентальном шельфе, вызвало возрождение интереса к струйным насосным установкам.

Струйные насосы являются разновидностью гидроприводных насосов, и они обладают всеми достоинствами этого вида оборудования.

Благодаря своим конструктивным особенностям струйные аппараты отличаются высокой надежностью и эффективностъю, особенно в осложненных условиях эксплуатации, например, при добыче пластовой жидкости со значительным содержанием механических примесей и коррозионно-активных веществ из наклонно направленных скважин.

К преимуществам струйных насосов относят их малые габариты, большую пропускную способность и возможность стабильно отбирать пластовую жидкость с высоким содержанием свободного газа. Кроме того, проста конструкция установок, отсутствуют движущиеся детали, возможно исполнение струйного насоса в виде свободного, сбрасываемого агрегата.

В струйном насосе или инжекторе (рис. 4.78) поток откачиваемой жидкости перемещается от забоя скважины до устья скважины за счет получения энергии от потока рабочей жидкости, подаваемого поверхностным силовым насосом с устья скважины.

Рис. 4.78. Схема струйного насоса (а) и движение жидкостей в нем (б): 1 — подвод откачиваемой жидкости; 2 — подвод рабочей жидкости; 3 — входное  кольцевое сопло; 4 — рабочее сопло; 5 — камера смешения; 6 — диффузор;  I — невозмущенная откачиваемая жидкость; II — пограничный слой; III — невозмущенная рабочая жидкость (ядро)


Нагнетание скважинной жидкости осуществляется благодаря явлению эжекции в рабочей камере, т.е. смешению скважинной жидкости с рабочим потоком жидкости, обладающим большой энергией, см. рис. 4.78.

Режим работы струйного насоса характеризуется следующими параметрами: рабочий напор НР, затрачиваемый в насосе и равный разности напоров рабочего потока на входе в насос (сечение В-В) и на выходе из него (сечение С-С), полезный напор НП, создаваемый насосом и равный разности напоров подаваемой жидкости за насосом (сечение С-С) и перед ним (сечение А-А); расход рабочей жидкости Q1; полезная подача Q0. КПД струйного насоса равен отношению полезной мощности к затраченной и может достигать величины КПД = 0,2...0,35:

Такое значение КПД струйных насосов обусловлено большими потерями энергии, сопровождающими рабочий процесс: в камере смешения (на вихреобразование и гидравлическое трение жидкости о стенки камеры); в элементах насоса, подводящих и отводящих жидкость (в рабочем и кольцевом сопле и диффузоре).

Струйный насос работает следующим образом. При истечении рабочей жидкости со скоростью V1, из сопла в затопленное пространство сразу за передним срезом сопла на поверхности струи возникает область смешения. Быстрые частицы проникают в окружающий медленный поток невозмущенной жидкости, подсасываемый через кольцевой проход в камеру со скоростью Vо и передают ей энергию. Этот процесс, основанный на интенсивном вихреобразовании, происходит в непрерывно утолщающемся по длине струйном пограничном слое. Вместе с тем внутренняя область рабочей струи, а именно ее ядро и внешняя область невозмущенной подсасываемой жидкости - постоянно уменьшаются и на расстоянии L от рабочего сопла потоки рабочей и откачиваемой жидкости уже полностью перемешаны. На дальнейшем участке камеры смешения происходит только выравнивание профиля скоростей потока жидкости. Чаще всего в струйных насосах применяют цилиндрические камеры смешения, технологические простые в изготовлении и обеспечивающие относительно высокий КПД.

Для преобразования достаточно высокой скорости потока в камере смешения в давление поток направляется в диффузор.

Технические характеристики скважинного струйного насоса

Струйный насос имеет два основных элемента: сопло и диффузор, состоящий иногда из нескольких деталей (см. рис. 4.79). К соплу подается рабочая жидкость под большим давлением. Она выходит из сопла в камеру смешения со значительной кинетической энергией. Откачиваемая жидкость поступает в ту же камеру и увлекается струей рабочей жидкости в горловину диффузора.

термины:
А Б В Г Д Е Ё Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Я

Буровые установки (агрегаты, станки) шпиндельного типа

Глубина бурения, м
100 м
300 м
500 м
800 м
2000 м

Буровые установки с подвижным вращателем

Глубина бурения, м
до 15 м.
до 25-50 м.
до 100 м.
до 300 м.
до500 м.
до1000 м.
до2000 м.

Буровые установки роторного типа для бурения скважин

Глубина бурения, м
до 25-50 м.
до 200 м.
600-800 м.
Глубина бурения 2000-3000 м.

Самоходные буровые установки для бурения скважин

Установка самоходная подъемная Азинмаш-37А1
Установка для устройства буронабивных свай СО-2
Агрегат для заглубления винтовых анкеров АЗА-3
Cамоходный буровой агрегат БА 15.06, 1БА15н.01, 1БА 15к.01
УРБ-3А3.13 самоходные и передвижные буровые установки
БА-63АВ Буровой агрегат на шасси КАМАЗ
БТС-150 станок буровой тракторный
Установка бурильно-крановая гидрофицированная типа УБКГ-ТА

Буровые установки и оборудование для глубокого бурения

Глубина бурения, м
Глубина бурениядо 3200м
Глубина бурения до 4000 м
Глубина бурения до 5000м
Глубина бурения 6000- 8000 м